

ALL GLOVES ARE NOT THE SAME

The Laboratory Safety Institute created this poster in memory of Karen Wetterhahn, a Dartmouth chemistry professor who died from dimethylmercury poisoning received through latex gloves.

- Poor for organic solvents
- Little chemical protection
- Hard to detect puncture holes
- Can trigger latex allergies (consider nitrile gloves as an alternative)

 Good for biological and water-based materials

BUTYL RUBBER

- Poor for gasoline, aliphatic and aromatic hydrocarbons and halogenated solvents
- Impaired dexterity

 Good for peroxides, strong acids and bases, alcohols, aldehydes, ketones, esters, nitro compounds

NEOPRENE

- Poor for halogenated and aromatic hydrocarbons
- Impaired dexterity

 Good for acids, bases, alcohols, fuels, peroxides, hydrocarbons and phenols

LAMINATE (Silver Shield®)

- Poor dexterity
- Not puncture resistant

 Good for many highly toxic materials including alcohols, aliphatic and aromatic hydrocarbons, chlorines, ketones and esters

TIP: Try double-gloving. The chemical protection not provided by one type of glove may be provided by the other. Dexterity lost by wearing a loose-fitting glove can be partially regained by wearing a tighter glove over it.

IMPORTANT: This poster was designed to raise safety awareness. It is NOT to be used as a guide for selecting gloves. Always consult the safety information provided by the GLOVE MANUFACTURER before starting work. The Laboratory Safety Institute is a non-profit organization committed to making health, safety and the environment an integral and important part of education, work, and life. More posters at labsafety.org.